NON-REGULAR ULTRAFILTERS

BY

MARKUS HUBERICH

Department of Mathematics MA 8-1 Technical University of Berlin Strasse des 17. Juni 136, 10623 Berlin, Germany e-mail: huberich@math.tu-berlin.de

ABSTRACT

We construct non-regular ultrafilters, extending filters which are dual to dense or layered ideals.

Introduction

If there is a σ -complete uniform ultrafilter on a cardinal κ , then κ is greater than or equal to a measurable cardinal. Interested in ultrafilters on smaller sets, one has to look at characteristics, which are weaker than completeness. In this paper we shall consider non-regular ultrafilters.

Definition 1: A filter F on a τ^+ -complete Boolean algebra B is (τ, κ) -regular iff there is an $A \subseteq F$, $|A| = \kappa$ such that $\prod A' = 0$ for each $A' \subseteq A$, $|A'| = \tau$. **|**

Thus F is non- (τ, κ) -regular if for all $A \subseteq F$, $|A| = \kappa$ there is an $A' \subseteq A$, $|A'| = \tau$ such that $\prod A' \neq 0$.

For the construction of the non-regular ultrafilters we will use ideals, which have strong saturation properties.

Definition 2: An ideal I on a Boolean algebra B is κ -dense iff B/I has a dense subset of size $\leq \kappa$. I is κ -layered (see [FMSh2]) iff there is a stationary set $S \subseteq {\alpha < \kappa^+ | cf(\alpha) = cf(\kappa)}$ and some continuous increasing chain of Boolean algebras $\langle B_{\alpha} | \alpha < \kappa^+ \rangle$ such that $B/I = \bigcup_{\alpha < \kappa^+} B_{\alpha}$ and for all $\alpha \in S$ B_{α} is a

Received March 26, 1992 and in revised form March 10, 1993

 κ -complete regular subalgebra of B such that $|B_\alpha| \leq \kappa$. I is strongly κ -layered if we can choose $S = {\alpha < \kappa^+ | \operatorname{cf}(\alpha) = \operatorname{cf}(\kappa)}.$

Note that κ -dense or κ -layered ideals are κ^+ -saturated.

Two important results about the existence of non-regular ultrafilters are from Laver and from Foreman, Magidor and Shelah. In [L], Laver constructed a non- (ω, ω_1) -regular, uniform ultrafilter on ω_1 . He extended the dual filter of an ω_1 dense, ω_1 -complete, normal ideal using \circ_{ω_1} (or at least CH as a result of [BSV]). In [FMSh2], Foreman, Magidor and Shelah got a non- (τ, κ) -regular, uniform ultrafilter on $\kappa = \tau^+$, τ regular, by forcing with a κ^+ -distributive partial ordering over a model with \Diamond_{κ} and with a κ -layered, normal ideal on κ .

In this paper we improve these results and give a more general method to construct non-regular ultrafilters on suitable sets without using \Diamond_{κ} . We shall prove the following theorem:

THEOREM: Let $\kappa > \omega$ be regular, let X be a nonempty set. Suppose that $I \subseteq \mathcal{P}(X)$ is a κ -complete, normal ideal on X such that $\{x \in X | \alpha \in x\} \in I^*$ for *all* $\alpha < \kappa$. If

- (1) *I* is κ -dense or
- (2) \Box_{κ} and *I* is strongly κ -layered,

then there is an ultrafilter U $\supseteq I^*$ *on X, which is non-(* τ, κ *)-regular for all* $\tau < \kappa$ such that $\{x \in X | x \cap \kappa \text{ is } < \tau\text{-closed}\} \in I^*$.

We shall actually prove a slightly more general theorem, only talking about ultrafilters and ideals on Boolean algebras. Therefore we shall later introduce some notion of normality for ideals on Boolean algebras.

Note that $\{x \in X | x \cap \kappa \text{ is } < \tau\text{-closed}\}\in I^*$ is trivial if $\tau = \omega$. It is also true, if $X = \kappa = \tau^+$, τ regular and if I is normal and κ^+ -saturated, since then $\{\alpha < \kappa | \text{cf}(\alpha) = \tau\} \in I^*$ (Shelah [Sh]). So Laver's result is a special case of this theorem. The theorem also implies the result of Forman, Magidor and Shelah: We can force a κ -layered ideal on κ with a κ^+ -distributive partial ordering to become strongly κ -layered. Then by forcing with another κ^+ -distributive partial ordering (which therefore do not destroy strongly κ -layeredness on κ) we have \square_{κ} .

How to get dense or layered ideals? If κ is a huge cardinal and if $\tau < \kappa$ is regular, then there is a generic extension, in which $\kappa = \tau^+$ and there is a strongly κ -layered, κ -complete ideal on κ [FMSh2]. Starting with an almost huge cardinal, Woodin constructed an ω_1 -dense, ω_1 -complete ideal on ω_1 .

We can apply this theorem to limit cardinals as well. Starting with a measurable cardinal, Kunen and Paris [KP] constructed a generic extension with a κ^+ -saturated, κ -complete, normal, uniform ideal on a weakly compact, nonmeasurable cardinal κ . Looking at the proof, one can see, that the ideal is actually κ -dense and that $\{\alpha < \kappa \mid cf(\alpha) > \tau\} \in I^*$ for all $\tau < \kappa$. Thus we have an ultrafilter on a weakly compact, non-measurable cardinal κ , which is non- (τ, κ) -regular for all $\tau < \kappa$ (Corollary 16).

A filter U on κ is called regular, if U is (ω, κ) -regular. It is well-known, that ultrapowers with regular ultrafilters have maximal size, i.e. $|A^{\kappa}/U| = |A|^{\kappa}$ for any infinite set A. Starting with an ω_1 -dense or strongly ω_1 -layered ideal on ω_1 , Laver [L] and Shelah [FMSh2] got uniform ultrafilters U on ω_1 such that $|\omega^{\omega_1}/U| = \aleph_1$. They used CH or \Diamond_{ω_1} . The construction in this paper needs no cardinal arithmetic assumptions and yields $|\omega^{\omega_1}/U| = 2^{\aleph_0}$ (Corollary 11).

For completeness note that in L all uniform ultrafilters are regular: Prikry $[P]$ showed that every uniform ultrafilter on κ^+ is (κ, κ^+) -regular if $V = L$. Ketonen [Ke] weakened the assumption $V = L$ to $\neg 0^{\#}$, Jensen [DJK] to $\neg L^{\mu}$, i.e. there is no inner model with a measurable cardinal. Jensen proved further, that in L every uniform ultrafilter on ω_n $(n < \omega)$ is regular. Finally Donder [D] showed, that in L every uniform ultrafilter on any cardinal is regular.

Notation

Let On denote the class of all Ordinals, Lim, Succ, Card the classes of all limit ordinals, successor ordinals and cardinals respectively. For all A, B let $AB := \{f \mid f: A \to B\}$. For any cardinal $\tau [A]^{\tau}$ and $[A]^{\leq \tau}$ denotes the set of all subsets of A of power τ and of power $\leq \tau$ respectively. A is $\leq \tau$ -closed if for all $x \in [A]^{<\tau} \cup x \in A$. $\langle a_{\alpha} | \alpha < \beta \rangle$ is **continuous increasing**, if $a_{\alpha} \subseteq a_{\alpha'}$ for all $\alpha \leq \alpha'$ and $a_{\gamma} = \bigcup_{\alpha < \gamma} a_{\alpha}$ for all $\gamma \in \text{Lim.}$ We write **Ba** for Boolean algebra and uf for ultrafilter. Let $(B, +, \cdot, -, 0, 1)$ be a Ba. B is κ -complete, if $\sum A$ exists in B for all $A \in [B]^{<\kappa}$. B is (κ, τ) -distributive iff $\prod_{\alpha < \overline{\kappa}} \sum_{\beta < \overline{\tau}} u_{\alpha\beta} =$ $\sum_{f: \overline{\kappa}\to\overline{\tau}}\prod_{\alpha<\overline{\kappa}}u_{\alpha f(\alpha)}$ for all $u_{\alpha\beta}\in B$, $\alpha<\overline{\kappa}<\kappa$, $\beta<\overline{\tau}<\tau$. $A\subseteq B$ has the finite intersection property (fip) iff $\prod A' \neq 0$ for all finite $A' \subseteq A$. If $A \subseteq B$ then $A^* := \{-a \mid a \in A\}$ is the dual set to A. For every $U \subseteq B$ with the fip we write $U^+ := \{b \in B | U \cup \{b\}$ has the fip}. For ideals $I \subseteq B$ let $I^+ := (I^*)^+$. i.e. $I^+ = B \setminus I$. $B^+ := \{0\}^+ = B \setminus \{0\}$. An ideal $I \subseteq B$ is called κ -saturated

278 M. HUBERICH Isr. J. Math.

iff every antichain in B/I has cardinality less then κ . If B is κ -complete, then we call I κ -complete iff $\sum A \in I$ for all $A \in [I]^{\leq \kappa}$. A subalgebra C of B is a regular subalgebra if every maximal antichain A in C is also a maximal antichain in B. This is fulfilled iff for each $b \in B^+$ there is a $c \in C^+$ such that for all $c' \in C^+$, if $c' \leq c$ then $c' \cdot b \neq 0$. (c is called a **projection** of b).

Let $I \subseteq \mathcal{P}(X)$ be an ideal on a set X. I is fine iff for every $i \in \bigcup X$ {x \in $X[i \in x] \in I^*$. I is called normal iff whenever $f: X \to V$ is regressive on some $b \in I^+$ (i.e. $f(x) \in x$ for all $x \in b$), then there is a $y \in \text{range } f$ such that $\{x \in$ *b|* $f(x) = y$ } \in *I*⁺. This is equivalent to *I* being closed under diagonal unions, i.e. if for all $i \in \bigcup X$ $X_i \in I$, then $\nabla_{i \in \bigcup X} X_i = \{x \in X \mid \exists i \in x \ x \in X_i\} \in I$. I is uniform iff for every $A \in I^*$ |A| = |X|. For filters we use the same notations as for ideals in their analogous meanings.

Dense ideals and non-regular ultrafilters

We introduce some notion of normality and fineness for ideals on Boolean algebras.

Definition 3: Let B be a κ^+ -complete Boolean algebra and let $A = \langle a_\alpha | \alpha \rangle$ $\kappa \in \mathcal{A}$. We call an ideal $I \subseteq B$ A-fine iff $a_{\alpha} \in I^*$ for all $\alpha < \kappa$. I is A-normal iff for all $\langle b_{\alpha} | \alpha < \kappa \rangle \in {}^{\kappa}I \sum_{\alpha < \kappa} (a_{\alpha} \cdot b_{\alpha}) \in I$.

Remark 4: An A-fine ideal $I \subseteq B$ is A-normal iff for all $\langle b_{\alpha} | \alpha < \kappa \rangle \in {}^{\kappa}B$ $\sum_{\alpha<\kappa} [b_{\alpha}]_I = [\sum_{\alpha<\kappa} a_{\alpha} b_{\alpha}]_I$ in the algebra B/I . Let $I \subseteq \mathcal{P}(X)$ be an ideal on some set X_{γ} let $\langle i_{\alpha} | \alpha \langle \kappa \rangle$ be any 1-1 sequence, let $a_{\alpha} := \{x \in X | i_{\alpha} \in x\}$ and $A := \langle a_{\alpha} | \alpha < \kappa \rangle$. If I is normal, then I is A-normal. If I is A-normal and $\bigcup X \subseteq \{i_{\alpha} | \alpha < \kappa\},\$ then I is normal.

Definition 5: Let B be a Boolean algebra, let $A, C, D \subseteq B$. We call C a D-cover of A iff for all $a \in A \cap D$ there is a $c \in C$ such that $a \cdot c \in D$.

We shall later use this notion to formulate some covering property of ultrafilters, which is sufficient to get non-regularity.

For the proof of the next lemma we apply a method similar to one, which is used in [BSV] for the construction of ultrafilters without socalled nowhere dense towers.

LEMMA 6: Let $\kappa > \omega$ be regular, let I be an ideal on a κ -complete Boolean *algebra B.* Then for all $A \in [B]^{\leq \kappa}$ there exists an ultrafilter $U \supseteq I^*$ on B such *that for every I⁺-cover* $C \subseteq A$ *of B there is a* $C' \in [C]^{< \kappa}$ *with* $\sum C' \in U$.

Proof: Let $\langle a_{\delta} | \delta \langle \kappa \rangle$ be an enumeration of A. For each $\delta \langle \kappa \rangle$ we define

$$
A_{\delta} := \left\{ \prod A' \mid A' \subseteq \{a_{\gamma} | \gamma < \delta\} \cup \{1\}, A' \text{ is finite} \right\}.
$$

Thus $\{a_{\gamma} | \gamma < \delta\} \subseteq A_{\delta}$ and $|A_{\delta}| < \kappa$.

CLAIM 1: For each I⁺-cover $C \subseteq A$ of B there exists a $\delta_C < \kappa$ such that $C \cap A_{\delta_C}$ *is an I⁺-cover of* A_{δ_C} *.*

Proof: Let $C \subseteq A$ be an I^+ -cover of B. Let $\delta < \kappa$. For each $a \in A_{\delta} \cap I^+$ choose a $c_a \in C$ and a $\delta_a \ge \delta$ such that $a \cdot c_a \in I^+$ and $c_a \in A_{\delta_a}$. Then $\delta^* := \sup \{ \delta_a | a \in A_{\delta} \cap I^+ \} < \kappa$. Let $\delta_0 := 0$, $\delta_{n+1} := \delta_n^*$ and $\delta_C := \sup_{n \in \omega} \delta_n$. Let $U_0 := \{\sum (C \cap A_{\delta_C}) | C \subseteq A \text{ is an } I^+\text{-cover of } B\}.$

CLAIM 2: $U_0 \cup I^*$ has the fip.

Proof: Let $C_1, \ldots, C_n \subseteq A$ be *I*⁺-covers of *B*. Let $\delta_i := \delta_{C_i}$. W.l.o.g. assume that $\delta_1 \leq \delta_2 \leq \cdots \leq \delta_n$. Since $1 \in A_{\delta_1} \cap I^+$, there is a $c_1 \in C_1 \cap A_{\delta_1}$ such that $c_1 \in I^+$. Since $c_1 \in A_{\delta_2} \cap I^+$ there exists a $c_2 \in C_2 \cap A_{\delta_2}$ such that $c_1 \cdot c_2 \in I^+$. At last we have choosen some $c_1 \in C_1 \cap A_{\delta_1}, \ldots, c_n \in C_n \cap A_{\delta_n}$ such that $c_1 \cdot c_2 \cdot \cdots \cdot c_n \in I^+$. Hence $\sum (C_1 \cap A_{\delta_1}) \cdot \cdots \cdot \sum (C_n \cap A_{\delta_n}) \in I^+$. Thus $U_0 \cup I^*$ has the fip.

Now every ultrafilter $U \supseteq U_0 \cup I^*$ has the required property.

LEMMA 7: Let $\kappa > \omega$ be regular, let I be a κ -complete, κ -dense ideal on some κ *-complete Boolean algebra B.* Then there is an *ultrafilter U* $\supseteq I^*$ such that for *each I⁺-cover C of B there is a* $C' \in [C]^{< \kappa}$ with $\sum C' \in U$.

Proof: Let $A \in [I^+]^{\leq \kappa}$ be dense in I^+ . Lemma 6 gives us an uf $U \supset I^*$ such that for each I^+ -cover $C \subseteq A$ of B there is a $C' \in [C]^{< \kappa}$ with $\sum C' \in U$.

U has the required property: Let $C \subseteq B$ be an I^+ -cover of B. For each $a \in A$ choose $c_a \in C$, $d_a \in A$ and $y_a \in I$ such that $a \cdot c_a \in I^+$ and $d_a - y_a \le a \cdot c_a$. ${d_a \mid a \in A}$ is dense in I^+ , so it is a subset of A, which is an I^+ -cover of B. Now we get an $A' \in [A]^{< \kappa}$ such that $\sum \{d_a | a \in A'\} \in U$. Then $\sum \{d_a - y_a | a \in A'\} \in U$ since I is κ -complete. Moreover $d_a - y_a \leq c_a$ implies $\sum \{c_a | a \in A'\} \in U$. This completes the proof. \blacksquare

LEMMA 8: Let $\kappa > \tau \geq \omega$, κ regular, let $I \subseteq \mathcal{P}(X)$ be a normal ideal on a nonempty set X such that $\{x \in X | \alpha \in x\} \in I^*$ for all $\alpha < \kappa$. Suppose that $U \supseteq I^*$ is an ultrafilter on X such that

(1) $\{x \in X | x \cap \kappa \text{ is } < \tau \text{closed} \} \in U$

(2) For each I⁺-cover C of $\mathcal{P}(X)$ there is a $C' \in |C|^{< \kappa}$ with $\bigcup C' \in U$.

Then U is non- (τ, κ) -regular.

Proof: Suppose that U is (τ, κ) -regular and that $\langle u_{\alpha} | \alpha \langle \kappa \rangle$ is a witness of the (τ, κ) -regularity. For each $x \in X$ let

$$
b_x := \{\alpha < \kappa \mid x \in u_\alpha\}
$$

Then $|b_x| < \tau$. Thus the function $f: X \to \kappa$

$$
f(x):=\bigcup (b_x\cap x)
$$

is regressive on $c := \{x \in X | x \cap \kappa \text{ is } \langle \tau \text{-closed} \rangle \in U$. $\{f^{-1}([\alpha)] | \alpha \langle \kappa \rangle \cup \{X \setminus c\}$ is an I^+ -cover of $\mathcal{P}(X)$: If for some $b \in I^+$ $b \setminus c \in I$, then f is regressive on $b \cap c \in I^+$; since *I* is normal, there is an $\alpha \in rng f$ such that $b \cap c \cap f^{-1}$ ⁿ $\{\alpha\} \in I^+$. Now by (2) there is an $u \in U$ and an $\alpha < \kappa$ such that $f''u \subseteq \alpha$. Then $b_x \cap x \subseteq \alpha$ for all $x \in u$, so $\alpha \notin b_x$ for all $x \in u$ such that $\alpha \in x$, hence $x \notin u_\alpha$. Thus $u \cap u_{\alpha} \cap \{x \in X | \alpha \in x\} = \emptyset$, a contradiction.

The proof of Lemma 9, the Boolean algebraic version of Lemma 8, is more technical.

LEMMA 9: Let $\kappa > \tau \geq \omega$, κ regular, let B be a $(2^{\kappa})^+$ -complete, (κ^+,κ^+) *distributive Boolean algebra* and *let I C B be* an *ideal, which is* A-fine and *A-normal for some* $A = \langle a_{\alpha} | \alpha \langle \kappa \rangle \in {}^{\kappa}B$ *. Suppose that* $U \supseteq I^*$ is an *ultrafilter on B such that*

 (1) $\prod_{\Gamma \in [k] \leq \tau}$ $(\sum_{\gamma \in \Gamma} -a_{\gamma} + a_{\sup \Gamma}) \in U$

(2) For each *I*⁺-cover *C* of *B* there is a $C \in [C]^{< \kappa}$ with $\sum C \in U$.

Then U is non- (τ, κ) -regular.

Note that $\prod_{\Gamma \in I_{\kappa} \leq \tau} \left\{ \sum_{\gamma \in \Gamma} -a_{\gamma} + a_{\text{sup}\Gamma} \right\} = \left\{ x \in X | x \cap \kappa \text{ is } \leq \tau\text{-closed} \right\}$ if $B = \mathcal{P}(X)$ and $a_{\gamma} = \{x \in X | \gamma \in x\}$ for all $\gamma < \kappa$. Condition (1) is trivial if $\tau=\omega$.

Proof: Suppose that U is (τ, κ) -regular and that $\langle u_{\alpha} | \alpha \langle \kappa \rangle$ is a witness of the (τ, κ) -regularity. Let

$$
c:=\prod_{\Gamma\in[\kappa]^{<\tau}}\Bigl(\sum_{\gamma\in\Gamma}-a_{\gamma}+a_{\sup\Gamma}\Bigr).
$$

W.l.o.g. for all $\alpha < \kappa$

 $u_{\alpha} \leq a_{\alpha} \cdot c.$

For each $\alpha < \kappa$ let

$$
b_{\alpha} := \prod_{\gamma < \alpha} \sum_{\beta > \gamma} u_{\beta} - \sum_{\beta > \alpha} u_{\beta}.
$$

CLAIM 1: $b_{\alpha} \leq a_{\alpha}$ for all $\alpha < \kappa, \alpha \neq 0$.

Proof:

$$
b_{\alpha} \leq \prod_{\gamma < \alpha} \sum_{\gamma < \beta \leq \alpha} u_{\beta} = \sum_{\substack{f : \alpha \to \alpha+1 \\ \forall \gamma f(\gamma) > \gamma}} \prod_{\gamma < \alpha} u_{f(\gamma)} \leq \sum_{\substack{\Gamma \in \mathcal{P}(\alpha+1) \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} u_{\gamma} \text{ (regularity) } u_{\alpha} + \sum_{\substack{\Gamma \in [\alpha+1]^{< \tau} \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} u_{\gamma} \text{ (regularity) } u_{\alpha} + \sum_{\substack{\Gamma \in [\alpha+1]^{< \tau} \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} u_{\gamma} \text{ (regularity) } u_{\gamma} + \sum_{\substack{\Gamma \in [\alpha+1]^{< \tau} \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} u_{\gamma} \text{ (linearly) } u_{\gamma} + \sum_{\substack{\Gamma \in [\alpha+1]^{< \tau} \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} u_{\gamma} \text{ (linearly) } u_{\gamma} + \sum_{\substack{\Gamma \in [\alpha+1]^{< \tau} \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} a_{\gamma} \text{ (linearly) } u_{\gamma} + \sum_{\substack{\Gamma \in [\alpha+1]^{< \tau} \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} a_{\gamma} \text{ (linearly) } u_{\gamma} + \sum_{\substack{\Gamma \in [\alpha+1]^{< \tau} \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} a_{\gamma} - a_{\gamma} \text{ (linearly) } u_{\gamma} + \sum_{\Gamma \in [\alpha+1]^{< \tau} \text{ } u_{\gamma} \in \Gamma} u_{\gamma} + \sum_{\Gamma \in [\alpha+1]^{< \tau} \text{ } u_{\gamma} \in \Gamma} u_{\gamma} + \sum_{\Gamma \in [\alpha+1]^{< \tau} \text{ } u_{\gamma} \in \Gamma} u_{\gamma} + \sum_{\substack{\Gamma \in [\alpha+1] \\ \text{sup }\Gamma = \alpha}} \prod_{\gamma \in \Gamma} a_{\gamma} - a_{\gamma} \
$$

CLAIM 2: $\{b_{\alpha} | \alpha < \kappa\}$ is an I^+ -cover of B.

Proof'.

$$
\sum_{\alpha < \kappa} b_{\alpha} = \sum_{\alpha < \kappa} \Big(\prod_{\gamma < \alpha} \sum_{\beta > \gamma} u_{\beta} - \sum_{\beta > \alpha} u_{\beta} \Big) = \sum_{\alpha < \kappa} \Big((-\sum_{\beta > \alpha} u_{\beta}) - \sum_{\gamma < \alpha} (-\sum_{\beta > \gamma} u_{\beta}) \Big)
$$
\n
$$
= \sum_{\alpha < \kappa} \Big(-\sum_{\beta > \alpha} u_{\beta} \Big) = -\prod_{\alpha < \kappa} \sum_{\beta > \alpha} u_{\beta} = -\sum_{\substack{\jmath : \kappa \to \kappa \\ \forall \alpha f(\alpha) > \alpha}} \prod_{\alpha < \kappa} u_{f(\alpha)} = 1
$$

since $\langle u_{\alpha} | \alpha < \kappa \rangle$ is a witness of the (τ, κ) -regularity. Using Claim 1 we get for every $d \in I^+$ $\sum_{\alpha < \kappa} a_{\alpha} b_{\alpha} d \ge a_0 d \sum_{\alpha < \kappa} b_{\alpha} = a_0 d \in I^+$. By A-normality there is some $\alpha < \kappa$ such that $b_{\alpha}d \in I^+$.

Now by (2) there exists a $\delta < \kappa$ such that $\sum_{\alpha < \delta} b_{\alpha} \in U$. Thus $u_{\delta} \cdot \sum_{\alpha < \delta} b_{\alpha} \in U$, but

$$
u_{\delta} \cdot \sum_{\alpha < \delta} b_{\alpha} = u_{\delta} \cdot \sum_{\alpha < \delta} \Big(\prod_{\gamma < \alpha} \sum_{\beta > \gamma} u_{\beta} - \sum_{\beta > \alpha} u_{\beta} \Big) \leq u_{\delta} \cdot \sum_{\alpha < \delta} \Big(- \sum_{\beta > \alpha} u_{\beta} \Big) = 0.
$$

Contradiction.

Now part (1) of the main theorem follows from Lemma 7 and 8. Lemma 7 and 9 imply Theorem 10, which is a generalisation of part (1) of the main theorem.

THEOREM 10: Let $\kappa > \omega$ be regular, let B be a $(2^{\kappa})^+$ -complete, (κ^+,κ^+) *distributive Boolean algebra. Suppose that* $I \subseteq B$ *is a* κ *-complete,* κ -dense *ideal, which is A-fine and A-normal for some* $A = \langle a_{\alpha} | \alpha \langle \kappa \rangle \in {}^{\kappa}B$ *. Then there is an ultrafilter* $U \supseteq I^*$ *on B, which is non-* (τ, κ) *-regular for all* $\tau < \kappa$ *such that* $\prod_{\Gamma \in [\kappa]^{<\tau}} \left(\sum_{\gamma \in \Gamma} -a_{\gamma} + a_{\text{sup}\Gamma} \right) \in I^*$.

We can use the previous lemmas to estimate the cardinality of some ultrapowers. Laver [L] proved, that every ultrafilter U on ω_1 , which is generated by a normal filter and some set of size ω_1 , is non- (ω, ω_1) -regular. Moreover $|\omega^{\omega_1}/U| = \aleph_1$ if CH holds. Actually Laver's argument shows: Let U be a non- (ν, ν^+) -regular ultrafilter on ν^+ , which is generated by a ν^+ -complete filter and some set of size 2^{ν} . Then $|\nu^{\nu^+}/U| \leq 2^{\nu}$.

COROLLARY 11: Let $I \subseteq \mathcal{P}(\nu^+)$ be a normal, ν^+ -dense ideal on ν^+ , ν regular, such that $\nu^+ \subseteq I$. Then there is an ultrafilter $U \supseteq I^*$ on ν^+ such that $|\nu^+ / U| \leq$ 2^{ν} .

Proof: I is ν^+ -complete. Lemma 7 gives us an ultrafilter $U \supseteq I^*$ on ν^+ such that for each I^+ -cover C of $\mathcal{P}(\nu^+)$ there is a $C' \in |C|^{\leq \nu}$ with $\bigcup C' \in U$. By Lemma 8 U is non- (ν, ν^+) -regular, since $\{\alpha < \nu^+ | \text{cf}(\alpha) = \nu\} \in I^*$ (Shelah [Sh]). Let $A \in [I^+]^{\leq \nu^+}$ be dense in $\mathcal{P}(\nu^+)/I$. Then $I^* \cup \{\bigcup A' \mid A' \in [A]^{\leq \nu}, \bigcup A' \in U\}$ generates U, since for any $b \subseteq \nu^+$ the set $C := \{a \in A | a \cap b \in I \text{ or } a \setminus b \in I\}$ is an I^+ -cover of $\mathcal{P}(\nu^+)$. Thus U is generated by I^* and some set of size 2^{ν} . Then by Laver's argument $|\nu^{\nu^+}/U| \leq 2^{\nu}$.

If $\nu = \omega$, then $|\omega^{\omega_1}/U| = 2^{\aleph_0}$ for the following reason: U is not ω_1 -complete. Let $\langle u_n | n < \omega \rangle \in {}^{\omega}U$ be decreasing such that $\bigcap_{n < \omega} u_n = \emptyset$. For every $A \subseteq \omega$ let $f_A: \omega_1 \to [\omega]^{<\omega}$, $f_A(x) := \{n \in A | x \in u_n\}$. Then $A \mapsto [f_A]_U$ is an injection from $\mathcal{P}(\omega)$ into $([\omega]^{<\omega})^{\omega_1}/U$ because $f_A(x) \neq f_B(x)$ for all $x \in u_n$ if $n \in A \setminus B$.

Layered ideals and non-regular ultrafilters

Before we prove part (2) of the main theorem we need two more lemmas.

LEMMA 12: Suppose that B_0 and B are κ -complete Boolean algebras, B_0 is a regular subalgebra of B and $U \subseteq B_0$ is an ultrafilter in B_0 such that for every B_0^+ -cover $C \subseteq B_0$ of B_0 there exists a $C' \in [C]^{< \kappa}$ with $\sum C' \in U$. If $A \subseteq B$ is a *B*⁺-cover of *B*, then $\{\sum A' | A' \in [A]^{< \kappa}\}\)$ is an U^+ -cover of *B*.

Proof. Let $A \subseteq B$ be a B^+ -cover of B, let $d \in U^+$. Consider $A_0 := \{b \in$ $B_0|b \cdot d = 0$ or for some $a \in A b$ is a projection of $d \cdot a$ in B_0 .

CLAIM 1: A_0 is a B_0^+ -cover of B_0 .

Proof: Let $b_0 \in B_0^+$. If $b_0 \cdot d = 0$, then $b_0 \in A_0$. If $b_0 \cdot d \neq 0$, then there is an $a \in A$ such that $a \cdot b_0 \cdot d \neq 0$. Let $b \in B_0$ be a projection of $a \cdot b_0 \cdot d$. Then $b \cdot a \cdot b_0 \cdot d \neq 0$, particularly $b \cdot b_0 \neq 0$. Moreover $b \in A_0$ since b is also a projection of $a \cdot d$. So in both cases there is a $b \in A_0$ such that $b \cdot b_0 \neq 0$.

By the assumption there is an $A'_0 \in [A_0]^{<\kappa}$ with $\sum A'_0 \in U$. Either $\sum \{b \in$ $A'_0|b\cdot d=0$ $\in U$ or $\sum\{b\in A'_0|$ for some $a\in A$ b is a projection of $d\cdot a\}\in U$. Since $d \cdot \sum \{b \in A_0 \mid b \cdot d = 0\} = 0$ the first case is impossible $(d \in U^+)$. So w.l.o.g. for every $b \in A_0'$ there is an $a \in A$ such that b is a projection of $d \cdot a$.

Choose $A' \in [A]^{< \kappa}$ such that for each $b \in A'_0$ there exists such an $a \in A'$. Let $a^{\star} := \sum A'.$

CLAIM 2: $a^* \cdot d \in U^+$.

Proof. Let $u \in U$. $u \cdot \sum A_0' \in U$ since $\sum A_0' \in U$. So there is an $a_0 \in A_0'$ such that $u \cdot a_0 \neq 0$. Choose an $a \in A'$ such that a_0 is a projection of $a \cdot d$. Then $u \cdot a_0 \cdot a \cdot d \neq 0$ (since $u \cdot a_0 \in B_0^+$) and therefore $u \cdot \sum A' \cdot d \neq 0$, i.e. $u \cdot a^* \cdot d \neq 0$.

Claim 2 completes the proof of Lemma 12. \blacksquare

LEMMA 13: Let $\kappa > \omega$ be regular, let B_0 , B and U be as in Lemma 12 and *assume that* $|B| \leq \kappa$. Then there exists an ultrafilter $V \supseteq U$ on B such that for *each B⁺-cover C of B there is a* $C' \in [C]^{< \kappa}$ *such that* $\sum C' \in V$.

Proof: Using Lemma 6 (with $A := B$, $I :=$ the ideal generated by U^* in B) we get an ultrafilter $V \supseteq U$ on B such that for each U^+ -cover C of B there is a $C' \in [C]^{< \kappa}$ with $\sum C' \in V$. If A is a B^+ -cover of B, then by Lemma 12 $C := {\sum A' | A' \in [A]^{<\kappa}}$ is a U^+ -cover of B. Hence there exists a $C' \in [C]^{<\kappa}$ with $\sum C' \in V$ and therefore an $A'' \in [A]^{< \kappa}$ with $\sum A'' \in V$ (κ is regular).

LEMMA 14: Let $\kappa > \omega$ be regular. Suppose \Box_{κ} and I is a κ -complete, strongly κ -layered ideal on a κ -complete Boolean algebra B. Then there is an ultrafilter $U \supseteq I^*$ such that for each I^+ -cover C of B there is a $C' \in [C]^{<\kappa}$ with $\sum C' \in U$.

Proof: Let $\langle B_{\alpha} | \alpha \langle \kappa^+ \rangle$ be a continuous increasing chain of Bas such that $B/I = \bigcup_{\alpha < \kappa^+} B_\alpha$ and for all $\alpha < \kappa^+$ such that $cf(\alpha) = \kappa B_\alpha$ is a κ -complete regular subalgebra of *B*/*I* of cardinality κ . Let $\langle C_{\alpha} | \alpha \in \kappa^+ \cap \text{Lim} \rangle$ be a \Box_{κ} sequence, i.e.

- (i) \mathcal{C}_{α} is club in α
- (ii) $C_{\beta} = C_{\alpha} \cap \beta$ if β is a limit point of C_{α}
- (iii) $ot(\mathcal{C}_{\alpha}) < \kappa$ if $cf(\alpha) < \kappa$.

Thus $ot(C_{\alpha}) = \kappa$ if $cf(\alpha) = \kappa$. Let $\langle \alpha_i | i \langle \kappa^+ \rangle$ be the strictly increasing enumeration of $\{\delta < \kappa^+ | \operatorname{cf}(\delta) = \kappa\}$. Choose for each $i < \kappa^+$ an enumeration $\langle b_i^{\delta} | \delta \langle \kappa \rangle$ of B_i . For each $j \in \kappa^+ \cap \text{Lim}$ and each $i \in C_j \cup \{j\}$ let

$$
B_j^i := \Big\{ \sum A \mid A \subseteq \{b_{\alpha_k}^{\delta} \mid \delta < ot(i \cap C_j), \ k \in i \cap C_j \}, \quad A \text{ is finite} \Big\}.
$$

We notice the following facts for all $j, j' \in \kappa^+ \cap \text{Lim}$ and all $i, i' \in C_j \cup \{j\}$:

(1) $|B_i^i| < \kappa$ if $cf(j) < \kappa$ or $i < j$ (2) $B_j^i \subseteq B_j^{i'}$ if $i \leq i'$ (3) $\bigcup_{i \in C_i} B_i^i = B_{\alpha_i}$ if $cf(j) = \kappa$ (4) $B_i^i \subseteq B_{\alpha_i} \subseteq B_{\alpha_j}$ (5) $B_j^i = B_{j'}^i$ if j is a limit point of $C_{j'}$ (since $i \cap C_j = i \cap C_{j'}$) (6) $\bigcup_{k \in i \cap C_i} B_i^k = B_i^i$ if i is a limit point of C_j (7) $\{\sum A \mid A \in [B_i^i]^{<\omega}\} \subseteq B_i^i$. Now we define recursively a sequence $\langle U_i | i \rangle \langle \kappa^+ \rangle$ which satisfies the following

conditions:

- (a) U_i is an uf on B_{α_i} such that for each $B_{\alpha_i}^+$ -cover $C \subseteq B_{\alpha_i}$ of B_{α_i} there is a $C' \in [C]^{<\kappa}$ with $\sum C' \in U_i$
- (b) $U_i \subseteq U_j$ for all $i < j < \kappa^+$
- (c) $V_i \subseteq U_j$ for all $j \in \kappa^+ \cap \text{Lim such that } cf(j) < \kappa$

where

$$
V_j := \left\{ \sum D \mid D \subseteq B_j^j \text{ is a } U_k^+ \text{-cover of } B_j^j \text{ for each } k \in C_j \right\}.
$$

Let $j < \kappa^+$ and suppose that $\langle U_i | i < j \rangle$ is already defined as required.

CASE 1: Let $j = 0$. Using Lemma 6 we get an ultrafilter U_0 on B_{α_0} satisfying **(a),**

CASE 2: Let $j \in \text{Succ}, j = k + 1$. Lemma 13 gives us an ultrafilter $U_j \supseteq U_k$ on B_{α_j} , which satisfies (a).

CASE 3: Let $j \in \text{Lim}, \text{cf}(j) < \kappa$. For each $\delta < \kappa$ let

$$
A_{\alpha_j}^{\delta} := \left\{ \sum A \mid A \subseteq \{b_{\alpha_j}^{\beta} \mid \beta < \delta\} \cup B_j^j, A \text{ is finite } \right\}.
$$

Then $|A_{\alpha_i}^{\delta}| < \kappa$ (since $|B_j^j| < \kappa$ if $cf(j) < \kappa$) and $\bigcup_{\delta \leq \kappa} A_{\alpha_j}^{\delta} = B_{\alpha_j}$. For each $B_{\alpha_j}^+$ -cover $C \subseteq B_{\alpha_j}$ of B_{α_j} such that $\{\sum C'| C' \in [C]^{< \kappa}\} \subseteq C$ there exists a $\delta_C < \kappa$ such that $C \cap A_{\alpha_i}^{\delta_C}$ is a U_k^+ -cover of $A_{\alpha_i}^{\delta_C}$ for each $k \in C_j$: Let $\delta_0 := 0$. If $\delta_n < \kappa$ is already defined, choose for every $k \in \mathcal{C}_j$ and every $b \in A_{\alpha_\gamma}^{\delta_n} \cap U_k^+$ some $c_b^k \in C$ and some $\delta_b^k > \delta_n$ such that $b \cdot c_b^k \in U_k^+$ and $c_b^k \in A_{\alpha_j}^{\delta_b^k}$ (this is possible by Lemma 12). Let $\delta_{n+1} := \sup \{ \delta_b^k \mid k \in C_j, b \in A_{\alpha_i}^{\delta_n} \cap U_k^+ \}$ and $\delta_C := \sup_{n \in \omega} \delta_n$. Then $C \cap A_{\alpha}^{\delta_C}$ is a U_k^+ -cover of $A_{\alpha}^{\delta_C}$ for each $k \in C_j$. Particularly $C \cap A_{\alpha}^{\delta_C}$ is a U^+_k -cover of B_i^j for each $k \in \mathcal{C}_j$ since $B_i^j \subseteq A_{\alpha_i}^{\delta_C}$. Let

$$
W_j := \Big\{ \sum (C \cap A_{\alpha_j}^{\delta_C}) \Big| C \subseteq B_{\alpha_j} \text{ is a } B_{\alpha_j}^+ \text{-cover of } B_{\alpha_j} \text{ such that } \{ \sum C' | C' \in [C]^{< \kappa} \} \subseteq C \Big\}.
$$

CLAIM A: $\bigcup_{i \leq j} U_i \cup V_j \cup W_j$ has the fip.

Proof: Suppose that $D_1, ..., D_m \subseteq B_j^j$ are U_k^+ -covers of B_j^j for each $k \in C_j$, $C_1, ..., C_n \subseteq B_{\alpha_j}$ are $B^+_{\alpha_j}$ -covers of B_{α_j} such that $\{\sum C' | C' \in [C_p]^{<\kappa}\}\subseteq C_p$, $1 \leq p \leq n$, and let $u \in \bigcup_{i \leq j} U_i$. There is an $k \in \mathcal{C}_j$ such that $u \in U_k$. Let $\delta_p := \delta_{C_p}(1 \leq p \leq n)$. It suffices to show that

$$
\sum D_1 \cdots \sum D_m \cdot \sum (C_1 \cap A_{\alpha_j}^{\delta_1}) \cdots \sum (C_n \cap A_{\alpha_j}^{\delta_n}) \in U_k^+.
$$

W.l.o.g. $\delta_1 \leq \delta_2 \leq \cdots \leq \delta_n$. Since $1 \in B_i^j \cap U_k^+$ there is a $d_1 \in D_1$ such that $d_1 \in U_k^+$. Since $d_1 \in B_j^j \cap U_k^+$ there is a $d_2 \in D_2$ such that $d_1 \cdot d_2 \in U_k^+$. Since $d_1 \cdot d_2 \in B_j^j \cap U_k^+$ there is a $d_3 \in D_3$ such that $d_1 \cdot d_2 \cdot d_3 \in U_k^+$. At last we have choosen $d_1 \in D_1, \ldots, d_m \in D_m$ such that $d_1 \cdots d_m \in B_i^j \cap U_k^+$. Since $C_1 \cap A_{\alpha_i}^{\delta_1}$ is a U_k^+ -cover of B_j^j there is a $c_1 \in C_1 \cap A_{\alpha_j}^{\delta_1}$ such that $d_1 \cdots d_m \cdot c_1 \in U_k^+$. Since $d_1 \cdots d_m \cdot c_1 \in A_{\alpha_j}^{\delta_2} \cap U_k^+$ there is a $c_2 \in C_2 \cap A_{\alpha_j}^{\delta_2}$ such that $d_1 \cdots d_m \cdot c_1 \cdot c_2 \in U_k^+$.

At last we have choosen $c_1 \in C_1 \cap A_{\alpha_j}^{\delta_1}, \ldots, c_n \in C_n \cap A_{\alpha_j}^{\delta_n}$ such that $d_1 \cdots d_m$. $c_1 \cdots c_n \in U_k^+$. Hence $\sum D_1 \cdots \sum D_m \cdot \sum (C_1 \cap A_{\alpha_j}^{\delta_1}) \cdots \sum (C_n \cap A_{\alpha_j}^{\delta_n}) \in U_k^+$.

Let $U_j \supseteq \bigcup_{i < i} U_i \cup V_j \cup W_j$ be an arbitrary uf on B_{α_j} . Then U_j satisfies the covering property (a) since $W_j \subseteq U_j$.

CASE 4: Let $j \in \text{Lim}, \text{cf}(j) = \kappa$. Then $\alpha_j = \sup_{i \leq j} \alpha_i$ and $B_{\alpha_j} = \bigcup_{i \leq j} B_{\alpha_i}$. Let $U_j := \bigcup_{i < j} U_i$. U_j is an uf on B_{α_j} .

CLAIM B: U_i satisfies (a).

Proof: Let $C \subseteq B_{\alpha_j}$ be a $B_{\alpha_j}^+$ -cover of B_{α_j} . W.l.o.g. $\{\sum C' | C' \in [C]^{< \kappa}\} \subseteq C$. Let $i_0 := \min \mathcal{C}_j$. If $i_n \in \mathcal{C}_j$ is already defined, then choose for each $k \in i_n \cap \mathcal{C}_j$ and each $b \in B^{i_n}_j \cap U^+_k$ a $c^k_b \in C$ and an $i^k_b > i_n$ such that $c^k_b \cdot b \in U^+_k, i^k_b \in C_j$ and $c_b^k \in B_i^{i_k^k}$ (this is possible by Lemma 12). Choose $i_{n+1} \in C_j$, $i_{n+1} \geq \sup\{i_b^k | k \in$ $i_n \n\cap C_j$, $b \in B_j^{i_n} \cap U_k^+$. Let $i := \sup_{n \in \omega} i_n$. Then $i \in j \cap \text{Lim and cf}(i) < \kappa$ since $i_n < i_{n+1} < j$. i is a limit point of C_j , so $C_i = i \cap C_j$ and $B_i^i = B_j^i$. Let $D := C \cap B_i^i$. D is a U_k^+ -cover of B_i^i for each $k \in C_i$: For each $k \in C_i$ and each $b \in B_i^i \cap U_k^+$ (= $B_i^i \cap U_k^+$) there is a $n < \omega$ such that $k \in i_n \cap C_j$ and $b \in B_i^{i_n} \cap U_k^+$. Hence there is a $c_b^k \in C \cap B_j^{i_{n+1}}$ such that $b \cdot c_b^k \in U_k^+$. Thus $c_b^k \in C \cap B_i^i = D$ since $B_j^{i_{n+1}} \subseteq B_j^i = B_i^i$. So $\sum D \in V_i$ and therefore $\sum D \in U_j$.

This completes the definition of $\langle U_i | i \rangle \langle \kappa^+ \rangle$.

Now let $V := \bigcup_{i \leq \kappa^+} U_i$. V is an uf on B. For each B^+ -cover $C \subseteq B$ of B there exists an $i < \kappa^+$ such that $C \cap B_{\alpha_i}$ is a $B_{\alpha_i}^+$ -cover of B_{α_i} . Thus there is *a* $C' \in [C \cap B_{\alpha_i}]^{\leq \kappa}$ with $\sum C' \in U_i$. Therefore $\sum C' \in V$. Let $U := \bigcup V$. Then $U \supseteq I^*$ and for each I^+ -cover C of B there is a $C' \in [C]^{<\kappa}$ such that $\sum C' \in U$. This completes the proof of Lemma 14.

Part (2) of the main theorem follows from Lemma 8 and 14. Lemma 9 and 14 imply Theorem 15, which is a generalization of part (2) of the main theorem.

THEOREM 15: Let $\kappa > \omega$ be regular, let B be a $(2^{\kappa})^+$ -complete, (κ^+,κ^+) *distributive Boolean algebra. Suppose* \Box_{κ} and $I \subseteq B$ is a κ -complete, strongly κ -layered ideal, which is *A*-fine and *A*-normal for some $A = \langle a_{\alpha} | \alpha \langle \kappa \rangle \in {}^{\kappa}B$. *Then there is an ultrafilter* $U \supseteq I^*$ on B , which is non- (τ,κ) -regular for all $\tau < \kappa$ such that $\prod_{\Gamma \in [\kappa]^{<\tau}} \left(\sum_{\gamma \in \Gamma} -a_{\gamma} + a_{\text{sup}} \Gamma \right) \in I^{\star}.$

We give an application of the main theorem to limit cardinals.

COROLLARY 16: *It is consistent relative to* the *existence of* a measurable car*dinal, that there is an uniform ultrafilter on a weakly compact, non-measurable cardinal* κ *, which is non-(* τ *,* κ *)-regular for all* $\tau < \kappa$ *.*

Proof: Starting with a measurable cardinal, Kunen and Paris ([KP], Theorem 4.4) constructed a generic extension with a κ -complete, κ ⁺-saturated, normal, uniform ideal I on a weakly compact, non-measurable cardinal κ . Looking at the construction in Lemma 4.9 of [KP], one can see, that this ideal is actually κ -dense and $\{\alpha < \kappa | \operatorname{cf}(\alpha) \geq \tau\} \in I^*$ for all $\tau < \kappa$. Using our main theorem, there is an uniform ultrafilter on κ , which is non- (τ, κ) -regular for all $\tau < \kappa$.

The main theorem may also become a tool to get non- (τ, κ) -regular ultrafilters even on sets X such that $|X| > \kappa$, if it becomes possible to construct suitable ideals.

Remark 17: The main theorem gives a new proof, that under MA_{N_1} there is no ω_1 -dense, ω_1 -complete ideal on ω_1 (see [FMSh1] or [T]), since Laver [L] showed, that under MA_{N_1} all uniform ultrafilters on ω_1 are regular.

References

- [BSV] B. Balcar, P. Simon and P. Vojtáš, *Refinement properties and extensions of filters* in *Boolean algebras,* Trans. Amer. Math. Soc. 267 (1981), 265-283.
- [D] H.-D. Donder, *Regularity of ultrafilters* and the *core model,* Israel J. Math. 63 (1988), 289-322.
- [DJK] H.-D. Donder, R. B. Jensen and B. J. Koppelberg, *Some applications* of the *core model,* in Set *Theory and Model Theory, Proc. Bonn* 1979, Lecture Notes in Mathematics 872, Springer-Verlag, Berlin, 1981, pp. 55-97.
- [FMShl] M. Foreman, M. Magidor and S. Shelah, *Martin's Maximum, saturated ideaIs and non-regular ultrafilters.* Part I, Ann. of Math. 127 (1988), 1-47.
- [FMSh2] M. Foreman, M. Magidor and S. Shelah, *Martin's Maximum, saturated ideals and non-regular ultrafilters.* Part *II,* Ann. of Math. 127 (1988), 521-545.
- **[H]** M. Huberich, Large *ideals on* small *cardinals,* Ann. Pure Appl. Logic. 63 (1993).
- **[Ka]** A. Kanamori, *Weakly normal filters and irregular ultrafilters,* Trans. Amer. Math. Soc. 220 (1976), 393-399.
- [Ke] J. Ketonen, *Nonregular ultrafilters and large cardinals,* Trans. Amer. Math. Soc. 224 (1976), 61-73.

